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1 Direct-Enhanced and Indirect-Only Prob-

ing Matrices

This section derives the direct-enhanced and indirect-only probing
matrices from the stochastic diagonal estimator of Equation (6).
Suppose i
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+ and i
k

− refer to the positive and negative components

of a Rademacher vector i
k, where i

k = i
k

+ − i
k

−. Note that the

codes ik+ and i
k

− have a Bernoulli distribution with success proba-
bility p = 0.5, where the elements have value 1 with probability
p and value 0 with probability 1 − p. The following derives from
Equation (10):
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The direct-enhancing term converges to a probing matrix contain-
ing the value 1 for diagonal elements, and the value 0.5 for off-
diagonal elements. The indirect-only term converges to a matrix
with 0 for diagonal elements and 0.5 for off-diagonal elements.
As expected, subtracting the indirect-only probing matrix from the
direct-enhanced matrix produces the identity matrix.

Random vectors x
k sampled from the Bernoulli distribution form

the direct-enhanced matrix in the limit:
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The diagonal entries Πnn of the probing matrix have the following
expected value:
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A similar derivation produces the expected value of the off-diagonal
entries Πnm where n 6= m:
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In the limit, the probing matrix has value p on the diagonal, and
p2 for off-diagonal elements. As the value p becomes smaller, the
diagonal terms become larger relative to the off-diagonal terms.
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The same set of random vectors x
k, with a minor modification,

forms the indirect-only probing matrix:
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The diagonal entries Πnn of the probing matrix converge to the
following:
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Once again, we derive the off-diagonal entries Πnm where n 6= m
for the indirect-only probing matrix:
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The off-diagonal term is maximum when p = 0.5. Note that, unlike
the direct-enhanced case, there is no benefit in setting p to any other
value.

When computing the direct-enhanced and indirect-only probing
matrices, we generate the illumination and mask codes such that
their sum produces a uniform image, as in the case of the direct-
enhancing and indirect-only terms of Equation (12). This results in
a set of mask codes that uniformly exposes each sensor pixel.

2 Accuracy of Stochastic Diagonal Estimator

Variance of estimate: derivation of Equation (7) The stochas-
tic diagonal estimator converges to the diagonal matrix when us-
ing independent and identically distributed random vectors sampled
from a distribution with mean 0 and variance 1. We derive the vari-



ance for a K-term estimate of the diagonal element Tnn as follows:
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Although any mean 0 and variance 1 distribution produces a prob-
ing matrix that converges to the identity matrix, the Rademacher
sequence is optimal in the sense that the sequence minimizes the
variance term. The variance is as follows for the Rademacher se-
quence:
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According to Equation (20), the number of primal-dual codes K
must increase by a factor of 2 to decrease the variance by a factor
of 2. Note that the variance term only depends on the off-diagonal
matrix entries.

Frequency independence of estimate We show that the vari-
ance of the diagonal estimator is independent of the frequency
of the off-diagonal elements. Suppose the off-diagonal elements
follow a sinusoidal distribution with an integer frequency f ∈
{1, 2, . . . ,m− 1}, as follows:

Tnm = sin((n−m)f
π

M
) (21)

We compute the variance of the corresponding point to show fre-
quency independence as follows:
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Note that the variance in Equation (22) is independent of the fre-
quency f .

Photo quality versus number of codes We capture the same
primal-dual photo multiple times using a variable number of codes.
Figure 1 and Figure 2 illustrate how the quality of direct/indirect
primal-dual photos depends on the number of codes used.

3 Codes Robust to Misalignments

Figure 3 illustrates how we handle spatial pixel misalignment. As

explained in Section 4 of the paper, we define our codes i
(k) and

m
(k) on a coarse pixel grid. Examples of such codes are shown in

Figures 3(a),(b). However, using these codes directly may still re-
sult in artifacts near the boundary of coarse pixels. For this reason,

we implement the code i
(k), m(k) using a twelve-code sequence

(i
(k)
l

, m
(k)
l

) that is defined on a finer pixel grid. Examples of this
sequence are shown in Figures 3(c),(d). The result of using this se-

quence to implement i(k), m(k) is shown in Figures 3(e),(f). Note
that although both Figures 3(a),(b) and Figures 3(e),(f) correspond
to photos of the scene with the same code, artifacts no longer appear
near coarse pixel boundaries in Figures 3(e),(f).



(a) scene under white illumination (b) 8 primal-dual codes (c) 16 primal-dual codes

(d) 32 primal-dual codes (e) 64 primal-dual codes (f) 128 primal-dual codes

(g) 256 primal-dual codes (h) 512 primal-dual codes
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Figure 1: (a) Photo of a scene under white light, containing contributions from both direct and indirect illumination. (b)-(h) Effect of the
number of primal-dual codes on the quality of the estimated direct illumination component. This component should not include specularities
from the disco ball, subsurface scattering from the translucent wax disk and the milky water within the coke bottle, or from the inter-reflections
of the book. With too few codes, the direct photos contain remnants of the primal-dual codes. These artifacts disappear for increased numbers
of codes, at a rate defined by Equation (7). (i) Plot of the intensity of the estimated direct component at two scene points, as a function of the
number of primal-dual codes: a point on a book lit by specular reflections from the disco ball (green) and a point on a wax disk that receives
contributions from subsurface scattering (red). As the number of primal-dual codes increases, the intensities converge as expected.



(a) scene under white illumination (b) 8 primal-dual codes (c) 16 primal-dual codes

(d) 32 primal-dual codes (e) 64 primal-dual codes (f) 128 primal-dual codes

(g) 256 primal-dual codes (h) 512 primal-dual codes
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Figure 2: (a) Photo of the scene in Figure 1(a), shown again for reference. (b)-(h) Effect of the number of primal-dual codes on the quality
of the estimated indirect illumination component. (i) Plot of the intensity of the indirect component at the same scene points as in Figure 1(i),
as a function of the number of primal-dual codes. Once again, the plots for both points converge as expected.
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Figure 3: Codes robust to pixel misalignment. Row 1: Images of a scene taken with a primal-dual code defined on a coarse pixel grid. The

projector and mask patterns are identical in (a), i.e., i(k) = m
(k), whereas in (b) they are complements of each other. Misalignment artifacts

appear as dark or bright pixels near coarse pixel boundaries. For example, the inset in (b) contains bright ghosting artifacts located near
these boundaries, a result of the mask not blocking all direct light from the scene. Row 2: Photo of the scene corresponding to one member,

(i
(k)
l

, m
(k)
l

), of the 12-code sequence we use to implement the codes in Row 1. Each code in the sequence samples the center 1
4

-th of each
coarse pixel to avoid exposing the region near its boundary. The primal-dual code shown in Row 2 is shifted four times during the sequence.
These shifts expose the area blocked by the previous codes in the sequence. The other eight codes in the sequence are blank frames captured
with a mask consisting of all zeros. Row 3: Summing the photos corresponding to the 12-code sequence results in the photos shown in (e),(f).
Note the lack of bright ghosting artifacts near the boundary of coarse pixels.


